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Abstract

Background: Student’s two-sample t test is generally used for comparing the means of two independent samples,
for example, two treatment arms. Under the null hypothesis, the t test assumes that the two samples arise from the
same normally distributed population with unknown variance. Adequate control of the Type I error requires that
the normality assumption holds, which is often examined by means of a preliminary Shapiro-Wilk test. The
following two-stage procedure is widely accepted: If the preliminary test for normality is not significant, the t test is
used; if the preliminary test rejects the null hypothesis of normality, a nonparametric test is applied in the
main analysis.

Methods: Equally sized samples were drawn from exponential, uniform, and normal distributions. The two-sample
t test was conducted if either both samples (Strategy I) or the collapsed set of residuals from both samples
(Strategy II) had passed the preliminary Shapiro-Wilk test for normality; otherwise, Mann-Whitney’s U test was
conducted. By simulation, we separately estimated the conditional Type I error probabilities for the parametric and
nonparametric part of the two-stage procedure. Finally, we assessed the overall Type I error rate and the power of
the two-stage procedure as a whole.

Results: Preliminary testing for normality seriously altered the conditional Type I error rates of the subsequent main
analysis for both parametric and nonparametric tests. We discuss possible explanations for the observed results, the
most important one being the selection mechanism due to the preliminary test. Interestingly, the overall Type I
error rate and power of the entire two-stage procedure remained within acceptable limits.

Conclusion: The two-stage procedure might be considered incorrect from a formal perspective; nevertheless, in
the investigated examples, this procedure seemed to satisfactorily maintain the nominal significance level and had
acceptable power properties.
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Background
Statistical tests have become more and more important
in medical research [1-3], but many publications have
been reported to contain serious statistical errors [4-10].
In this regard, violation of distributional assumptions
has been identified as one of the most common pro-
blems: According to Olsen [9], a frequent error is to use
statistical tests that assume a normal distribution on
data that are actually skewed. With small samples,
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Neville et al. [10] considered the use of parametric tests
erroneous unless a test for normality had been con-
ducted before. Similarly, Strasak et al. [7] criticized that
contributors to medical journals often failed to examine
and report that assumptions had been met when con-
ducting Student’s t test.
Probably one of the most popular research questions

is whether two independent samples differ from each
other. Altman, for example, stated that “most clinical
trials yield data of this type, as do observational studies
comparing different groups of subjects” ([11], p. 191). In
Student’s t test, the expectations of two populations are
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compared. The test assumes independent sampling from
normal distributions with equal variance. If these
assumptions are met and the null hypothesis of equal
population means holds true, the test statistic T follows
a t distribution with nX + nY – 2 degrees of freedom:

T ¼ mX �mY

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nX

þ 1
nY

q ;

where mX and mY are the observed sample means, nX
and nY are the sample sizes of the two groups, and s is
an estimate of the common standard deviation. If the
assumptions are violated, T is compared with the wrong
reference distribution, which may result in a deviation of
the actual Type I error from the nominal significance
level [12,13], in a loss of power relative to other tests
developed for similar problems [14], or both. In medical
research, normally distributed data are the exception ra-
ther than the rule [15,16]. In such situations, the use of
parametric methods is discouraged, and nonparametric
tests (which are also referred to as distribution-free
tests) such as the two-sample Mann–Whitney U test are
recommended instead [11,17].

Guidelines for contributions to medical journals
emphasize the importance of distributional assumptions
[18,19]. Sometimes, special recommendations are pro-
vided. When addressing the question of how to compare
changes from baseline in randomized clinical trials if
data do not follow a normal distribution, Vickers, for ex-
ample, concluded that such data are best analyzed with
analysis of covariance [20]. In clinical trials, a detailed
description of the statistical analysis is mandatory [21].
This description requires good knowledge about the
clinical endpoints, which is often limited. Researchers,
therefore, tend to specify alternative statistical proce-
dures in case the underlying assumptions are not satis-
fied (e.g., [22]). For the t test, Livingston [23] presented
a list of conditions that must be considered (e.g., normal
distribution, equal variances, etc.). Consequently, some
researchers routinely check if their data fulfill the
assumptions and change the analysis method if they do
not (for a review, see [24]).
In a preliminary test, a specific assumption is checked;

the outcome of the pretest then determines which
method should be used for assessing the main hypoth-
esis [25-28]. For the paired t test, Freidlin et al. ([29],
p. 887) referred to as “a natural adaptive procedure (. . .)
to first apply the Shapiro-Wilk test to the differences: if
normality is accepted, the t test is used; otherwise the
Wilcoxon signed ranked test is used.” Similar two-stage
procedures including a preliminary test for normality are
common for two-sample t tests [30,31]. Therefore, con-
ventional statistical practice for comparing continuous
outcomes from two independent samples is to use a
pretest for normality (H0: “The true distribution is nor-
mal” against H1: “The true distribution is non-normal”)
at significance level αpre before testing the main hypoth-
esis. If the pretest is not significant, the statistic T is used
to test the main hypothesis of equal population means at
significance level α. If the pretest is significant, Mann-
Whitney’s U test may be applied to compare the two
groups. Such a two-stage procedure (Additional file 1)
appears logical, and goodness-of-fit tests for normality
are frequently reported in articles [32-35].
Some authors have recently warned against prelimin-

ary testing [24,36-45]. First of all, theoretical drawbacks
exist with regard to the preliminary testing of assump-
tions. The basic difficulty of a typical pretest is that the
desired result is often the acceptance of the null hypoth-
esis. In practice, the conclusion about the validity of, for
example, the normality assumption is then implicit ra-
ther than explicit: Because insufficient evidence exists to
reject normality, normality will be considered true. In
this context, Schucany and Ng [41] speak about a “lo-
gical problem”. Further critiques of preliminary testing
focused on the fact that assumptions refer to character-
istics of populations and not to characteristics of sam-
ples. In particular, small to moderate sample sizes do not
guarantee matching of the sample distribution with the
population distribution. For example, Altman ([11],
Figure 4.7, p. 60) showed that even sample sizes of 50
taken from a normal distribution may look non-normal.
Second, some preliminary tests are accompanied by their
own underlying assumptions, raising the question of
whether these assumptions also need to be examined. In
addition, even if the preliminary test indicates that the
tested assumption does not hold, the actual test of inter-
est may still be robust to violations of this assumption.
Finally, preliminary tests are usually applied to the same
data as the subsequent test, which may result in uncon-
trolled error rates. For the one-sample t test, Schucany
and Ng [41] conducted a simulation study of the conse-
quences of the two-stage selection procedure including a
preliminary test for normality. Data were sampled from
normal, uniform, exponential, and Cauchy populations.
The authors estimated the Type I error rate of the one-
sample t test, given that the sample had passed the
Shapiro-Wilk test for normality with a p value greater
than αpre. For exponentially distributed data, the condi-
tional Type I error rate of the main test turned out to be
strikingly above the nominal significance level and even
increased with sample size. For two-sample tests, Zim-
merman [42-45] addressed the question of how the Type
I error and power are modified if a researcher’s choice of
test (i.e., t test for equal versus unequal variances) is
based on sample statistics of variance homogeneity.
Zimmerman concluded that choosing the pooled or sep-
arate variance version of the t test solely on the
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inspection of the sample data does neither maintain the
significance level nor protect the power of the proced-
ure. Rasch et al. [39] assessed the statistical properties of
a three-stage procedure including testing for normality
and for homogeneity of the variances. The authors con-
cluded that assumptions underlying the two-sample t
test should not be pre-tested because “pre-testing leads
to unknown final Type I and Type II risks if the respect-
ive statistical tests are performed using the same set of
observations”. Interestingly, none of the studies cited
above explicitly addressed the unconditional error rates
of the two-stage procedure as a whole. The studies ra-
ther focused on the conditional error rates, that is, the
Type I and Type II error of single arms of the two-stage
procedure.
In the present study, we investigated the statistical

properties of Student’s t test and Mann-Whitney’s U test
for comparing two independent groups with different se-
lection procedures. Similar to Schucany and Ng [41], the
tests to be applied were chosen depending on the results
of the preliminary Shapiro-Wilk tests for normality of
the two samples involved. We thereby obtained an esti-
mate of the conditional Type I error rates for samples
that were classified as normal although the underlying
populations were in fact non-normal, and vice-versa.
This probability reflects the error rate researchers may
face with respect to the main hypothesis if they mis-
takenly believe the normality assumption to be satisfied
or violated. If, in addition, the power of the preliminary
Shapiro-Wilk test is taken into account, the potential
impact of the entire two-stage procedure on the overall
Type I error rate and power can be directly estimated.

Methods
In our simulation study, equally sized samples for two
groups were drawn from three different distributions,
covering a variety of shapes of data encountered in clin-
ical research. Two selection strategies were examined for
the main test to be applied. In Strategy I, the two-
sample t test was conducted if both samples had passed
the preliminary Shapiro-Wilk test for normality; other-
wise, we applied Mann-Whitney’s U test. In Strategy II, the
t test was conducted if the residuals xi �mXð Þ; yi �mYð Þ
from both samples had passed the pretest; otherwise, we
used the U test. The difference between the two strategies
is that, in Strategy I, the Shapiro-Wilk test for normality is
separately conducted on raw data from each sample,
whereas in Strategy II, the preliminary test is applied only
once, i.e. to the collapsed set of residuals from both
samples.
Statistical language R 2.14.0 [46] was used for the

simulations. Random sample pairs of size nX = nY = 10,
20, 30, 40, 50 were generated from the following distribu-
tions: (1) exponential distribution with unit expectation
and variance; (2) uniform distribution in [0, 1]; and (3)
the standard normal distribution. This procedure was
repeated until 10,000 pairs of samples had passed the
preliminary screening for normality (either Strategy I or
II, with αpre = .100, .050, .010, .005, or no pretest). For
these samples, the null hypothesis μX = μY was tested
against the alternative μX 6¼ μY using Student’s t test at
the two-sided significance level α= .05. The conditional
Type I errors rates (left arm of the decision tree in Add-
itional file 1) were then estimated by the number of sig-
nificant t tests divided by 10,000. The precision of the
results thereby amounts to maximally ±1% (width of the
95% confidence interval for proportion 0.5). In a second
run, sample generation was repeated until 10,000 pairs
were collected that had failed preliminary screening for
normality (Strategy I or II), and the conditional Type I
error was estimated for Mann-Whitney’s U test (right
part of Additional file 1).
Finally, 100,000 pairs of samples were generated from

exponential, uniform, and normal distributions to assess
the unconditional Type I error of the entire two-stage
procedure. Depending on whether the preliminary
Shapiro-Wilk test was significant or not, Mann-
Whitney’s U test or Student’s t test was conducted for
the main analysis. The Type I error rate of the entire
two-stage procedure was estimated by the number of
significant tests (t or U) and division by 100,000.

Results
Strategy I
The first strategy required both samples to pass the pre-
liminary screening for normality to proceed with the
two-sample t test; otherwise, we used Mann-Whitney’s
U test. This strategy was motivated by the well-known
assumption that the two-sample t test requires data
within each of the two groups to be sampled from nor-
mally distributed populations (e.g., [11]).
Table 1 (left) summarizes the estimated conditional

Type I error probabilities of the standard two-sample
t test (i.e., t test assuming equal variances) at the two-
sided nominal level α= .05 after both samples had passed
the Shapiro-Wilk test for normality, as well as the un-
conditional Type I error rate of the t test without a pre-
test for normality. Figure 1 additionally plots the
corresponding estimates if the underlying distribution
was either (A) exponential, (B) uniform, or (C) normal.
As can be seen from Table 1 and Figure 1, the un-
conditional two-sample t test (i.e., without pretest) was
α-robust, even if the underlying distribution was expo-
nential or uniform. In contrast, the observed conditional
Type I error rates differed from the nominal significance
level. For the exponential distribution, the selective ap-
plication of the two-sample t test to pairs of samples
that had been accepted as normal led to Type I error



Table 1 Left: Estimated Type I error probability of the two-sample t test at α= .05 after both samples had passed the
Shapiro-Wilk test for normality (Strategy I with αpre = .100, .050, .010, .005), and without pretest.—Right: Estimated
Type I error of the U test for samples that failed testing for normality

t test U test

αpre n=10 n=20 n=30 n=40 n=50 n=10 n=20 n=30 n=40 n=50

Exponential distribution

.100 .091 .150 .170 .190 .210 .050 .048 .051 .050 .051

.050 .079 .127 .153 .168 .188 .052 .052 .050 .045 .053

.010 .061 .099 .112 .140 .154 .055 .051 .049 .049 .047

.005 .060 .085 .108 .127 .144 .060 .047 .052 .049 .048

Without pretest .045 .047 .047 .048 .047 .053 .050 .048 .050 .051

Uniform distribution

.100 .043 .044 .039 .039 .036 .075 .055 .052 .051 .049

.050 .043 .037 .040 .040 .037 .093 .059 .058 .051 .051

.010 .049 .050 .046 .045 .041 .168 .111 .074 .060 .057

.005 .052 .050 .048 .044 .043 .233 .133 .087 .069 .059

Without pretest .058 .047 .052 .047 .050 .050 .050 .052 .048 .049

Normal distribution

.100 .049 .053 .050 .049 .050 .069 .058 .055 .061 .056

.050 .049 .050 .050 .053 .046 .069 .063 .062 .064 .059

.010 .050 .050 .047 .048 .051 .090 .081 .073 .072 .074

.005 .047 .047 .050 .054 .050 .093 .085 .084 .081 .073

Without pretest .051 .053 .049 .053 .050 .054 .047 .047 .049 .049
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rates of the final t test that were considerably larger than
α= .05 (Figure 1A). Moreover, the violation of the signifi-
cance level increased with sample size and αpre. For ex-
ample, for n= 30, the observed Type I error rates of the
two-sample t test turned out to be 10.8% for αpre = .005
and even 17.0% for αpre = .100, whereas the uncondi-
tional Type I error rate was 4.7%. If the underlying dis-
tribution was uniform, the conditional Type I error rates
declined below the nominal level, particularly as samples
became larger and preliminary significance levels
Figure 1 Estimated Type I error probability of the two-sample t test a
normality at αpre = .100, .050, .010, .005 (conditional), and without pre
(B) uniform, and (C) normal distribution.
increased (Figure 1B). For normally distributed popula-
tions, conditional and unconditional Type I error rates
roughly followed the nominal significance level
(Figure 1C).
For pairs in which at least one sample had not passed

the pretest for normality, we conducted Mann-Whitney’s
U test. The estimated conditional Type I error probabil-
ities are summarized in Table 1 (right): For exponential
samples, only a negligible tendency towards conservative
decisions was observed, but samples from the uniform
t α= .05 after both samples had passed the Shapiro-Wilk test for
test (unconditional). Samples of equal size from the (A) exponential,
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distribution, and, to a lesser extent, samples from the
normal distribution proved problematic. In contrast to
the pattern observed for the conditional t test, however,
the nominal significance level was mostly violated in
small samples and numerically low significance levels of
the pretest (e.g., αpre = .005).

Strategy II
The two-sample t test is a special case of a linear model
that assumes independent normally distributed errors.
Therefore, the normality assumption can be examined
through residuals instead of raw data. In linear models,
residuals are defined as differences between observed
and expected values. In the two-sample comparison,
the expected value for a measurement corresponds to
the mean of the sample from which it derived, so that the
residual simplifies to the difference between the observed
value and the sample mean. In regression modeling, the
assumption of normality is often checked by the plotting
of residuals after parameter estimation. However, this
order may be reversed, and formal tests of normality
based on residuals may be carried out. In Strategy II, one
single Shapiro-Wilk test was applied to the collapsed set
of residuals from both samples; thus, in contrast to Strat-
egy I, only one pretest for normality had to be passed.
Table 2 Left: Estimated Type I error probability of the two-sa
normality of the residuals (Strategy II with αpre = .100, .050, .0
error for the U test for samples that failed testing for normal

t test

αpre n=10 n=20 n=30 n=40

Exponential distribution

.100 .122 .398 .709 N/A

.050 .096 .317 .611 .839

.010 .072 .196 .421 .669

.005 .064 .162 .347 .583

Without pretest .044 .048 .047 .049

Uniform distribution

.100 .065 .108 .196 .333

.050 .052 .081 .133 .233

.010 .051 .057 .076 .116

.005 .047 .050 .066 .090

Without pretest .051 .048 .049 .050

Normal distribution

.100 .049 .053 .048 .053

.050 .051 .052 .051 .052

.010 .049 .046 .048 .051

.005 .045 .051 .050 .049

Without pretest .052 .051 .046 .051

Note: N/A, not available because nearly all samples were detected to deviate signifi
Table 2 (left) and Figure 2 show the estimated condi-
tional Type I error probabilities of the two-sample t test
at α= .05 (two-sided) after residuals had passed the
Shapiro-Wilk test for the three different underlying dis-
tributions and for different αpre levels as well as the cor-
responding unconditional Type I error rates (i.e.,
without pretest). For the normal distribution, the condi-
tional and the unconditional Type I error rates were very
close to the nominal significance level for all sample
sizes and αpre levels considered. Thus, if the underlying
distribution was normal, the preliminary Shapiro-Wilk
test for normality of the residuals did not affect the Type I
error probability of the subsequent two-sample t test.
For the two other distributions, the results were strik-

ingly different. For samples from the exponential distri-
bution, conditional Type I error rates were much larger
than the nominal significance level (Figure 2A). For ex-
ample, at αpre = .005, conditional Type I error rates ran-
ged between 6.4% for n= 10 up to 79.2% in samples of
n= 50. For the largest preliminary αpre level of .100, sam-
ples of n= 30 reached error rates above 70%. Thus, the
discrepancy between the observed Type I error rate and
the nominal α was even more pronounced than for
Strategy I and increased again with growing preliminary
αpre and increasing sample size.
mple t test at α= .05 for samples that passed testing for
10, .005), and without pretest.—Right: Estimated Type I
ity

U test

n=50 n=10 n=20 n=30 n=40 n=50

N/A .037 .049 .047 .047 .050

N/A .034 .046 .048 .050 .050

.859 .034 .046 .045 .051 .050

.792 .036 .040 .047 .044 .048

.051 .041 .054 .046 .044 .050

.529 .027 .024 .029 .041 .045

.377 .025 .018 .022 .035 .044

.184 .036 .011 .013 .022 .031

.138 .046 .012 .012 .016 .029

.050 .043 .053 .047 .048 .050

.048 .071 .074 .063 .062 .061

.053 .085 .079 .071 .064 .067

.049 .120 .107 .087 .073 .073

.051 .153 .107 .090 .083 .079

.048 .044 .045 .051 .044 .050

cantly from the normal distribution.



Figure 2 Estimated Type I error probability of the two-sample t test at α= .05 after the residuals had passed the Shapiro-Wilk test for
normality at αpre = .100, .050, .010, .005 (conditional), and without pretest (unconditional). Samples of equal size from the (A) exponential,
(B) uniform, and (C) normal distribution.
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Surprisingly and in remarkable contrast to the results
observed for Strategy I, samples from the uniform distri-
bution that had passed screening for normality of resi-
duals also led to conditional Type I error rates that were
far above 5% (Figure 2B). The distortion of the Type I
error rate was only slightly less extreme for the uniform
than for the exponential distribution, resulting in error
rates up to 50%. The conditional Type I error rate
increased again with growing sample size and increasing
preliminary significance level of the Shapiro-Wilk test.
For example, at αpre = .100, conditional Type I error rates
were between 6.5% for n= 10 and even 52.9% for n= 50.
Similarly, in samples of n= 50, the conditional Type I
error rate was between 13.8% for αpre = .005 and 52.9%
for αpre = .100, whereas the Type I error rate without
pretest was close to 5.0%.
If the distribution of the residuals was judged as non-

normal by the preliminary Shapiro-Wilk test, the two
samples were compared by means of Mann-Whitney’s U
test (Table 2, right). As for Strategy I, the Type I error
rate of the conditional U test was closest to the nominal
α for samples from the exponential distribution. For
samples from the uniform distribution, the U test did
not fully exhaust the significance level but showed re-
markably anti-conservative behavior for samples drawn
from the normal distribution, which was most pro-
nounced in small samples and numerically low αpre.

Entire two-stage procedure
Biased decisions within the two arms of the decision tree
in Additional file 1 are mainly a matter of theoretical
interest, whereas the unconditional Type I error and
power of the two-stage procedure reflect how the algo-
rithm works in practice. Therefore, we directly assessed
the practical consequences of the entire two-stage pro-
cedure with respect to the overall, unconditional, Type I
error. This evaluation was additionally motivated by the
anticipation that, although the observed conditional
Type I error rates of both the main parametric test and
the nonparametric test were seriously altered by screen-
ing for normality, these results will rarely occur in prac-
tice because the Shapiro-Wilk test is very powerful in
large samples. Again, pairs of samples were generated
from exponential, uniform, and normal distributions.
Depending on whether the preliminary Shapiro-Wilk
test was significant or not, Mann-Whitney’s U test or
Student’s t test was conducted in the main analysis.
Table 3 outlines the estimated unconditional Type I
error rates. In line with this expectation, the results
show that the two-stage procedure as a whole can be
considered robust with respect to the unconditional
Type I error rate. This holds true for all three distribu-
tions considered, irrespectively of the strategy chosen for
the preliminary test.
Because the two-stage procedure seemed to keep the

nominal significance level, we additionally investigated
the corresponding statistical power. To this end, 100,000
pairs of samples were drawn from unit variance normal
distributions with means 0.0 and 0.6, from uniform dis-
tributions in [0.0, 1.0] and [0.2, 1.2], and from exponen-
tial distributions with rate parameters 1.0 and 2.0.
As Table 4 shows, statistical power to detect a shift in

two normal distributions corresponds to the weighted
sum of the power of the unconditional use of Student’s
t test and Mann-Whitney’s U test. When both samples
must pass the preliminary test for normality (Strategy I),
the weights correspond to (1 – αpre)

2 and 1 – (1 – αpre)
2

respectively, which is consistent with the rejection rate
of the Shapiro-Wilk test under the normality assump-
tion. For Strategy II, the weights roughly correspond to
1 – αpre and αpre respectively (a minimal deviation can
be expected here because the residuals from the two
samples are not completely independent). Similar results
were observed for shifted uniform distributions and



Table 3: Estimated Type I error probability of the two-stage procedure (Student’s t test or Mann-Whitney’s U test
depending on preliminary Shapiro-Wilk test for normality) for different sample sizes and αpre

Strategy I Strategy II

αpre n=10 n=20 n=30 n=40 n=50 n=10 n=20 n=30 n=40 n=50

Exponential distribution

.100 .050 .050 .048 .049 .048 .053 .050 .048 .049 .048

.050 .053 .050 .048 .049 .050 .055 .052 .048 .049 .050

.010 .054 .054 .048 .049 .050 .054 .054 .048 .049 .050

.005 .050 .056 .050 .048 .049 .050 .055 .049 .048 .049

Uniform distribution

.100 .049 .050 .047 .049 .049 .052 .051 .048 .049 .049

.050 .051 .050 .050 .049 .048 .053 .051 .051 .050 .048

.010 .051 .050 .051 .050 .051 .051 .051 .052 .051 .051

.005 .052 .049 .049 .051 .050 .052 .050 .050 .052 .050

Normal distribution

.100 .050 .052 .052 .051 .052 .051 .052 .053 .051 .051

.050 .051 .051 .051 .051 .051 .051 .051 .051 .051 .050

.010 .049 .051 .051 .051 .051 .050 .051 .051 .051 .051

.005 .051 .050 .049 .050 .050 .051 .050 .049 .050 .050

Note: Type I error of the unconditional application of Student’s t test and Mann-Whitney’s U test is shown in Table 1 and Table 2.
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exponential distributions with different rate parameters:
In both distributions, the overall power of the two-stage
procedure seemed to lie in-between the power estimated
for the unconditional t test and the U test.

Discussion
The appropriateness of a statistical test, which depends
on underlying distributional assumptions, is generally
not a problem if the population distribution is known in
advance. If the assumption of normality is known to be
wrong, a nonparametric test may be used that does not
require normally distributed data. Difficulties arise if the
population distribution is unknown—which, unfortu-
nately, is the most common scenario in medical re-
search. Many statistical textbooks and articles state that
assumptions should be checked before conducting statis-
tical tests, and that tests should be chosen depending on
whether the assumptions are met (e.g., [22,28,47,48]).
Various options for testing assumptions are easily avail-
able and sometimes even automatically generated within
the standard output of statistical software (e.g., see SAS
or SPSS for the assumption of variance homogeneity for
the t test; for a discussion see [42-45]). Similarly, meth-
odological guidelines for clinical trials generally recom-
mend checking for conditions underlying statistical
methods. According to ICH E3, for example, when pre-
senting the results of a statistical analysis, researchers
should demonstrate that the data satisfied the crucial
underlying assumptions of the statistical test used [49].
Although it is well-known that decision-making after
inspection of sample data can lead to altered Type I and
Type II error probabilities and sometimes to spurious
rejection of the null hypothesis, researchers are often
confused or unaware of the potential shortcomings of
such two-stage procedures.

Conditional Type I error rates
We demonstrated the dramatic effects of preliminary
testing for normality on the conditional Type I error rate
of the main test (see Tables 1 and 2, and Figures 1 and 2).
Most of these consequences were qualitatively similar for
Strategy I (separate preliminary test for each sample) and
Strategy II (preliminary test based on residuals), but
quantitatively more pronounced for Strategy II than for
Strategy I. On the one hand, the results replicated those
found for the one-sample t test [41]. On the other hand,
our study revealed interesting new findings: Preliminary
testing not only affects the Type I error of the t test on
samples from non-normal distributions but also the per-
formance of Mann-Whitney’s U test for equally sized
samples from uniform and normal distributions. Since
we focused on a two-stage procedure assuming
homogenous variances, it can be expected that an
additional test for homogeneity of variances should lead
to a further distortion of the conditional Type I error
rates (e.g., [39,42-45]).
Detailed discussion on potential reasons for the detri-

mental effects of preliminary tests is provided elsewhere
[30,41,50]; therefore, only a global argument is given
here: Exponentially distributed variables follow an



Table 4: Estimated power of the two-stage procedure for different sample sizes and αpre
Strategy I Strategy II

n=10 n=20 n=30 n=40 n=50 n=10 n=20 n=30 n=40 n=50

Exponential distributions with rate parameters 1.0 and 2.0

U test only .224 .443 .612 .743 .835

αpre = .100 .248 .446 .609 .743 .835 .259 .449 .609 .743 .835

αpre = .050 .254 .451 .610 .744 .835 .261 .454 .610 .744 .835

αpre = .010 .270 .467 .615 .744 .835 .271 .466 .615 .744 .835

αpre = .005 .264 .482 .615 .743 .837 .265 .475 .614 .743 .837

t test only .240 .518 .721 .847 .919

Uniform distributions in [0.0, 1.0] and [0.2, 1.2]

U test only .256 .512 .686 .813 .892

αpre = .100 .287 .537 .703 .817 .894 .290 .529 .697 .816 .895

αpre = .050 .292 .550 .714 .821 .894 .294 .542 .702 .817 .894

αpre = .010 .295 .558 .740 .848 .908 .295 .559 .729 .835 .900

αpre = .005 .294 .561 .749 .855 .915 .295 .563 .742 .842 .906

t test only .292 .561 .748 .867 .930

Normal distributions with means 0.0 and 0.6 and unit variance

U test only .215 .434 .600 .731 .824

αpre = .100 .244 .455 .626 .750 .840 .249 .459 .631 .754 .843

αpre = .050 .245 .456 .625 .753 .842 .248 .459 .628 .755 .844

αpre = .010 .244 .455 .629 .756 .842 .245 .455 .630 .756 .842

αpre = .005 .245 .458 .627 .751 .845 .246 .458 .628 .752 .845

t test only .247 .456 .627 .754 .844
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exponential distribution, and uniformly distributed vari-
ables follow a uniform distribution. This trivial state-
ment holds, regardless of whether a preliminary test for
normality is applied to the data or not. A sample or a
pair of samples is not normally distributed just because
the result of the Shapiro-Wilk test suggests it. From a
formal perspective, a sample is a set of fixed ‘realiza-
tions’; it is not a random variable which could be said to
follow some distribution. The preliminary test cannot
alter this basic fact; it can only select samples which
appear to be drawn from a normal distribution. If, how-
ever, the underlying population is exponential, the pre-
liminary test selects samples that are not representative
of the underlying population. Of course, the Type I error
rates of hypotheses tests are strongly altered if they are
based on unrepresentative samples. Similarly, if the
underlying distribution is normal, the pretest will filter
out samples that do not appear normal with probability
αpre. These latter samples are again not representative
for the underlying population, so that the Type I error of
the subsequent nonparametric test will be equally
affected.
In general, the problem is that the distribution of the

test statistic of the test of interest depends on the out-
come of the pretest. More precisely, errors occurring at
the preliminary stage change the distribution of the test
statistic at the second stage [38]. As can be seen in
Tables 1 and 2, the distortion of the Type I error
observed for Strategy I and II is based on at least two
different mechanisms. The first mechanism is related to
the power of the Shapiro-Wilk test: For the exponential
distribution, Strategy I considerably affects the t test, but
Strategy II does so even more. As both tables show, dis-
tortion of the Type I error, if present, is most pro-
nounced in large samples. In line with this result,
Strategy II alters the conditional Type I error to a
greater extent than Strategy I, probably because in Strat-
egy II, the pretest is applied to the collapsed set of resi-
duals, that is, the pretest is based on a sample twice the
size of that used in Strategy I.
To illustrate the second mechanism, asymmetry, we

consider the interesting special case of Strategy I applied
to samples from uniform distribution. In Strategy I,
Mann-Whitney’s U test was chosen if the pretest for
normality failed in at least one sample. Large violations
of the nominal significance level of Mann-Whitney’s U
test were observed for small samples and numerically
low significance levels for the pretest (23.3% for αpre =
.005 and n= 10). At αpre = .005 and n= 10, the Shapiro-
Wilk test has low power, so that only samples with
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extreme properties will be identified. In general, how-
ever, samples from the uniform distribution do not have
extreme properties, such that, in most cases, only one
member of the sample pair will be sufficiently extreme
to be detected by the Shapiro-Wilk test. Consequently,
pairs of samples are selected by the preliminary test for
which one member is extreme and the other member is
representative; the main significance test will then indi-
cate that the samples differ indeed. For these pairs of
samples, the Shapiro-Wilk test and the Mann–Whitney
U test essentially yield the same result because they test
similar hypotheses. In contrast, in Strategy II, the pre-
test selected pairs of samples for which the set of resi-
duals (i.e., the two samples shifted over each other)
appeared non-normal. This result mostly corresponds to
the standard situation in nonparametric statistics, so that
the conditional Type I error rate of Mann-Whitney’s U
test applied to samples from uniform distribution was
unaffected by the asymmetry mechanism.

Type I error and power of the entire two-stage procedure
On the one hand, our study showed that conditional
Type I error rates may heavily deviate from the nominal
significance level (Tables 1 and 2). On the other hand,
direct assessment of the unconditional Type I error rate
(Table 3) and power (Table 4) of the two-stage proced-
ure suggests that the two-stage procedure as a whole has
acceptable statistical properties. What might be the rea-
son for this discrepancy? To assess the consequences of
preliminary tests for the entire two-stage procedure, the
power of the pretest needs to be taken into account,

P Type I errorð Þ ¼ P Type I error \ Pretest n:s:ð Þ
þ P Type I error \ Pretest sig:ð Þ

¼ P Type I error Pretest n:s:j Þð
�P Pretest n:s:ð Þ
þP Type I error Pretest sig:j Þð
�P Pretest sig:ð Þ;

with P(Type I error | Pretest n.s.) denoting the condi-
tional Type I error rate of the t test (Tables 1 and 2 left),
P(Type I error | Pretest sig.) denoting the conditional
Type I error rate of the U test (Tables 1 and 2 right),
and P(Pretest sig.) and P(Pretest n.s.) denoting the power
and 1 – power of the pretest for normality. In Strategy I,
P(Pretest sig.) corresponds to the probability to reject
normality for at least one of the two samples, whereas in
Strategy II, it is the probability to reject the assumption
of normality of the residuals from both samples.
For the t test, unacceptable rates of false decisions due

to selection effects of the preliminary Shapiro-Wilk test
occur for large samples and numerically high signifi-

cance levels αpre (e.g., left column in Table 2). In these
settings, however, the Shapiro-Wilk test detects devia-
tions from normality with nearly 100% power, so that
the Student’s t test is practically never used. Instead, the
nonparametric test is used that seems to protect the
Type I error for those samples. This pattern of results
holds for both Strategy I and Strategy II. Conversely, it
was demonstrated above that Mann-Whitney’s U test is
biased for normally distributed data if the sample size is
low and the preliminary significance level is strict (e.g.,
αpre = .005, right columns of Tables 1 or 2). For samples
from normal distribution, however, deviation from nor-
mality is only rarely detected at αpre = .005, so that the
consequences for the overall Type I error of the entire
two-stage procedure are again very limited.
A similar argument holds for statistical power: For a

given alternative, the overall power of the two-stage pro-
cedure corresponds, by construction, to the weighted
sum of the conditional power of the t test and U test.
When populations deviate only slightly from normality,
the pretest for normality has low power, and the power
of the two-stage procedure will tend towards the uncon-
ditional power of Student’s t test; this fact only does not
hold in those rare cases in which the preliminary test
indicates non-normality, so that the slightly less power-
ful Mann–Whitney U test is applied. When the popula-
tions deviate considerably from normality, the power of
the Shapiro-Wilk test is high for both strategies, and the
overall power of the two-stage procedure will tend to-
wards the unconditional power of Mann-Whitney’s U
test.
Finally, it should be emphasized that the conditional

Type I error rates shown in Tables 1 and 2 correspond
to the rather unlikely scenario in which researchers
would continue sampling until the assumptions are met.
In contrast, the unconditional Type I error and power of
the two-stage procedure are most relevant because in
practice, researchers do not continue sampling until they
obtain normality. Researchers who do not know in ad-
vance whether the underlying population distribution is
normal, usually base their decision on the samples
obtained. If by chance a sample from a non-normal dis-
tribution happens to look normal, the researcher could
falsely assume that the normality assumption holds.
However, this chance is rather low because of the high
power of the Shapiro-Wilk test, particularly for larger
sample sizes.

Conclusions
From a formal perspective, preliminary testing for nor-
mality is incorrect and should therefore be avoided. Nor-
mality has to be established for the populations under
consideration; if this is not possible, “support for the as-
sumption of normality must come from extra-data
sources” ([30], p. 7). For example, when planning a
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study, assumptions may be based on the results of earlier
trials [21] or pilot studies [36]. Although often limited in
size, pilot studies could serve to identify substantial
deviations from normality. From a practical perspective,
however, preliminary testing does not seem to cause
much harm, at least for the cases we have investigated.
The worst that can be said is that preliminary testing is
unnecessary: For large samples, the t test has been
shown to be robust in many situations [51-55] (see also
Tables 1 and 2 of the present paper) and for small sam-
ples, the Shapiro-Wilk test lacks power to detect devia-
tions from normality. If the application of the t test is
doubtful, the unconditional use of nonparametric tests
seems to be the best choice [56].
Additional file

Additional file 1: Two-stage procedure including a preliminary test
for normality.
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